Healthcare via Cell Phones: A Systematic Review

Santosh Krishna, Ph.D., Ed.S., 1 Suzanne Austin Boren, Ph.D., M.H.A., 2-4 and E. Andrew Balas, M.D., Ph.D. 5

1School of Public Health, Saint Louis University, St. Louis, Missouri.
2Health Services Research and Development Program, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri.
3Health Management & Informatics, School of Medicine, University of Missouri, Columbia, Missouri.
4Center for Healthcare Quality, School of Medicine, University of Missouri, Columbia, Missouri.
5College of Health Sciences, Old Dominion University, Norfolk, Virginia.

Abstract
Regular care and informational support are helpful in improving disease-related health outcomes. Communication technologies can help in providing such care and support. The purpose of this study was to evaluate the empirical evidence related to the role of cell phones and text messaging interventions in improving health outcomes and processes of care. Scientific literature was searched to identify controlled studies evaluating cell phone voice and text message interventions to provide care and disease management support. Searches identified 25 studies that evaluated cell phone voice and text messaging interventions, with 20 randomized controlled trials and 5 controlled studies. Nineteen studies assessed outcomes of care and six assessed processes of care. Selected studies included 38,060 participants with 10,374 adults and 27,686 children. They covered 12 clinical areas and took place in 13 countries. Frequency of message delivery ranged from 5 times per day for diabetes and smoking cessation support to once a week for advice on how to overcome barriers and maintain regular physical activity. Significant improvements were noted in compliance with medication taking, asthma symptoms, HbA1C, stress levels, smoking quit rates, and self-efficacy. Process improvements were reported in lower failed appointments, quicker diagnosis and treatment, and improved teaching and training. Cost per text message was provided by two studies. The findings that enhancing standard care with reminders, disease monitoring and management, and education through cell phone voice and short message service can help improve health outcomes and care processes have implications for both patients and providers.

Key words: cellular phone, SMS, text messaging, wireless, outcomes of care, process of care

Introduction
Disease management and prevention have been known to reduce morbidity, yet it is an ongoing challenge to find effective ways of providing care and preventive management support that will lead to behavior change and improved health outcomes. Phone-based interventions have brought positive results among persons of low socioeconomic status and ethnic minority. 3 Interventions involving automated message systems have been shown to improve knowledge and health outcomes in a variety of health areas. 3, 5 Technologies such as cell phones and text messaging that are already a part of people's daily lives have great potential for improving people's health by assisting them with behavior modification and disease self-management.

According to Cellular Telecommunications and Internet Association, there are approximately 262 million cell phone subscribers in the United States.4 Almost every household in the United States has one cell phone. Not only is the use of cell phones for voice communication increasing, but also its use for text messaging and Internet access is on the rise.5-9 Text messaging has increased manyfold since the 35% of Pew survey respondents said in 2006 that they had used text messaging and an additional 13% wanted to add this feature to their cell phones. The use of cell phones and text messaging has been found to be even higher among teens and young adults compared to older adults all over the world.6-10 Parents provide cell phones to teenagers as a harm minimization strategy through increased communication.11
Contrary to the commonly held belief that persons of low socioeconomic status do not have access to technology, ownership and use of cell phones is as prevalent among those from a lower socioeconomic status as among those from the general population.

In spite of such widespread ownership of cell phones, use of voice or text-messaging in disease management and self-care is still in its infancy. No systematic review of cell phone-based interventions exists to our knowledge in published scientific literature that analyzes evidence on whether the use of cell phones and text messaging interventions improves health outcomes or processes of care, whether it is acceptable to users, and whether it is a cost-effective option. The goal of this study was to gather scientific evidence on the effective uses of cell phones with voice or text messaging for health information interventions, disease management, or for improving process of care. We systematically reviewed published studies to evaluate the contribution of cell phones and text messaging in improving the process and outcomes of care.

Methods

DATA SOURCES

We searched MEDLINE (1950–May 2008) for relevant studies using combinations of the following search terms: (1) telephone (MeSH), cellular phone (MeSH), handheld computers (MeSH), cell phone$ (truncated textword), mobile phone$ (truncated textword), text message$ (truncated textword), short message service (SMS) (textword), or personal digital assistant (PDA) (textword); and (2) patient education as topic (MeSH), health education (MeSH), patient educat$ (truncated textword), or health educat$ (truncated textword). We also systematically searched the reference lists of included studies.

INCLUSION AND EXCLUSION CRITERIA

Our inclusion criteria were randomized controlled trials or controlled studies that evaluated delivery of health information or educational intervention using cell phone or text messaging and measured change in the process of care and/or health outcomes. Studies that used wired Internet to provide information through e-mail or the Web in addition to wireless communication were included. Studies published in a language other than English with a complete English abstract were included if they met the specified inclusion criteria. We excluded studies that did not use a control group.

STUDY SELECTION AND DATA EXTRACTION

The investigators reviewed the titles and abstracts of the identified citations and applied inclusion and exclusion criteria described above. The investigators collected data from each eligible article including descriptions of the patient sample, technology used, duration, delivery frequency, intervention, process and outcome measures, and statistical significance. Information on study design, clinical areas, and country were also abstracted from the full text of all eligible studies. For the purposes of this review, a trial was successful if there was a significant outcome (p < 0.05) for the intervention group compared with the control group at follow-up. The investigators analyzed the publications to assess which interventions led to significant or nonsignificant results.

Results

Comprehensive literature searches in MEDLINE using the terms “cellular phone” or “mobile phone” or “text messaging” or “SMS” identified 2,735 citations. Limiting the identified citations to randomized controlled trials or controlled studies produced 97 citations. To identify studies of health improvement information or education interventions, titles and abstracts of 97 articles were screened to determine relevance. Those articles discussing the harmful health effects of cellular phones such as damage to health from the electromagnetic fields were excluded. After reading the abstracts or full text of articles, 25 articles meeting the eligibility criteria (i.e., publications that reported the use of cell phones for educational or informational interventions in improving the health outcomes or process of care) were selected (Table 1).

The final set of 25 studies included 20 randomized controlled trials and 5 controlled trials, with 38,600 participants, including 10,374 adults and 27,686 children. The duration in these studies ranged from 1 to 12 months, with an average duration of 6 months, and one study taking place over only 2 days. Use of cell phones and SMS was applied to 12 different clinical areas, with nine articles on diabetes, four articles on smoking cessation, two articles each on HIV/AIDS and general outpatient clinics, two articles each on hypertension, physical activity, orthodontics, hepatitis vaccinations, stress management, physical disabilities, and health promotion. Studies took place in several countries. Four studies were conducted in Australia, three in the United Kingdom, eight reports of three studies took place in Korea, two each in New Zealand, Spain, and the United States, and one study each in Austria, China, Croatia, Italy, France, Netherlands, and Norway.

TECHNOLOGY AND FREQUENCY OF INTERVENTION

The technology used in all 25 studies was voice or the SMS feature of cell phones. Four studies used only the voice feature of cell phones for the intervention. Whereas 8 of 25 studies used voice...
<table>
<thead>
<tr>
<th>AUTHOR/YR</th>
<th>SAMPLE SIZE</th>
<th>TECHNOLOGY</th>
<th>DURATION (MONTHS)</th>
<th>DELIVERY FREQUENCY</th>
<th>CONTROL</th>
<th>INTERVENTION</th>
<th>MEASURES</th>
<th>RESULTS C VS. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniradha 2005</td>
<td>58</td>
<td>V</td>
<td>6</td>
<td>Weekly</td>
<td>No medication reminder</td>
<td>SMS/telephone reminder with medicine name and a specific dose. Other instructions optional, such as “Take one tablet on empty stomach”</td>
<td>Adherence to medicine taking</td>
<td>56% vs. 79%, p < 0.05</td>
</tr>
<tr>
<td>Benhamou 2007</td>
<td>30</td>
<td>SMS, V, PDA, I</td>
<td>12</td>
<td>Weekly</td>
<td>No weekly SMS support</td>
<td>Weekly SMS diabetes treatment advice from their healthcare providers based on weekly transfer of SMBG and QOL survey every 3 months</td>
<td>HbA1c, SMBG, OOL score, Satisfaction with Life Hypo episodes, No. of BG tests/day</td>
<td>+0.12 vs. -0.14%, p < 0.10 +5 vs. -6 mg/dL, p = 0.06 0.0 vs. 0.6, p < 0.05 -0.01 vs. +0.1, p < 0.05 79.1 vs. 69.1/patient, NS -0.16 vs. -0.11/day, NS</td>
</tr>
<tr>
<td>Bos 2005</td>
<td>301</td>
<td>SMS</td>
<td>0.75</td>
<td>Once 24 h prior</td>
<td>No reminder sent</td>
<td>SMS reminder the day before</td>
<td>Failed attendance rate, Method preference</td>
<td>Telephone Mail</td>
</tr>
<tr>
<td>Bramley 2005</td>
<td>1705</td>
<td>SMS</td>
<td>6.5</td>
<td>Daily</td>
<td>No advice or support</td>
<td>SMS smoking cessation advice, support and distraction</td>
<td>Quit rate non-Maori vs. Maori 90 quitting</td>
<td>11% vs. 26%</td>
</tr>
<tr>
<td>Brendgen 2007</td>
<td>396</td>
<td>SMS, V, I, EM</td>
<td>12</td>
<td>Daily</td>
<td>Self-help booklet</td>
<td>Internet– and cell-phone-based Happy Ending intervention</td>
<td>Repeated point abstinence rate, NRT adherence rate, Self-efficacy level</td>
<td>13.1% vs. 22.3%, p < 0.05 93% vs. 87%, NS 5.10 vs. 4.38, p < 0.001</td>
</tr>
<tr>
<td>Chen 2008</td>
<td>1848</td>
<td>SMS</td>
<td>2</td>
<td>Once, 72 h prior</td>
<td>No reminder, telephone reminder</td>
<td>A phone call by an assistant or a SMS reminder sent, one time, 72 hours prior to the appointment</td>
<td>Attendance rate: Control vs. phone vs. SMS</td>
<td>Cost – SMS vs. phone</td>
</tr>
<tr>
<td>Downer 2005</td>
<td>2864</td>
<td>SMS</td>
<td>2</td>
<td>Once, 72 h prior</td>
<td>No SMS reminder</td>
<td>SMS reminder, 72 hours prior</td>
<td>FTA rate</td>
<td>14% vs. 36%, p < 0.01</td>
</tr>
<tr>
<td>Downer 2006</td>
<td>52,658</td>
<td>SMS</td>
<td>3</td>
<td>Once, 72 h prior</td>
<td>No SMS reminder</td>
<td>SMS reminder, 72 h prior</td>
<td>FTA rate-new patients, FTA rate-other patients</td>
<td>Cost per message, Costs saved</td>
</tr>
<tr>
<td>Franklin 2005</td>
<td>92</td>
<td>SMS, V</td>
<td>12</td>
<td>Daily</td>
<td>IT, IT with ST</td>
<td>Daily text-messages with personalized goal-specific prompts and tailored to patient's age, gender, and insulin regimen</td>
<td>HbA1c, Self-efficacy, Adherence</td>
<td>10.3 vs. 10.1 vs. 9.2%, p < 0.01 10.6 vs. 6.2 vs. 9.2%, p < 0.01 78.4 vs. 77.2, p < 0.05</td>
</tr>
</tbody>
</table>

continued →
<table>
<thead>
<tr>
<th>AUTHOR/YR</th>
<th>SAMPLE SIZE</th>
<th>TECHNOLOGY</th>
<th>DURATION (MONTHS)</th>
<th>DELIVERY FREQUENCY</th>
<th>CONTROL</th>
<th>INTERVENTION</th>
<th>MEASURES</th>
<th>RESULTS C VS. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurting 200713</td>
<td>77</td>
<td>SMS, V, I</td>
<td>4</td>
<td>Weekly</td>
<td>Verbal advice during clinic visit</td>
<td>Internet, e-mail and mobile phone personalized advice and motivational tips on how to overcome barriers and maintain appropriate level of physical activity, utilizing various types of activities. Chart display of daily, weekly, and overall activity levels input by participant.</td>
<td>Change in: PA overall, MET min/week PA leisure time, MET min/week Hours sitting-overall Hours sitting: weekdays Hours sitting: weekends BMI</td>
<td>4.0 vs. 12, NS -5.5 vs. 4.1, p < 0.05 0.17 vs. -2.18, p < 0.05 1.4 vs. -5.9, p < 0.05 -0.2 vs. -5.2, NS 208.7 vs. 218.5, p < 0.05 0.10 vs. -0.24, NS -0.17% vs. -2.18%, p < 0.05 0.73 vs. 0.69, NS 0.41 vs. 0.13, NS -0.37 vs. 0.07, p < 0.01 -0.01 vs. 0.05, p < 0.01 5.85 vs. 7.24, p < 0.001 5.33 vs. 6.38, p < 0.01</td>
</tr>
<tr>
<td>Kim HS 200914</td>
<td>51</td>
<td>SMS, I</td>
<td>3</td>
<td>Weekly</td>
<td>No weekly SMS support. Standard care during clinic visit</td>
<td>Weekly recommendations by a nurse to adjust medication or insulin based on patient's SMBG, medications, insulin dose, diet, and exercise level. Patients received reminders if they did not input data at least once a week.</td>
<td>HbA1c FPG levels mg/dL 2HrPMB</td>
<td>7.7 vs. 7.0, p < 0.05 149.5 vs. 145.7, NS 218.0 vs. 192.6, p < 0.05</td>
</tr>
<tr>
<td>Kim 200715</td>
<td>51</td>
<td>SMS, I</td>
<td>3</td>
<td>Weekly</td>
<td>No weekly SMS support. Standard care during clinic visit</td>
<td>Weekly recommendations by a nurse to adjust medication or insulin based on patient's input of SMBG, medications, insulin dose, diet, and exercise level. Patients received reminders if they did not input information at least once a week.</td>
<td>Glu 1: <90mg HbA1c FPG levels mg/dL 2HrPMB</td>
<td>0.53, NS vs. -0.21, p < 0.05 -5.8, NS vs. -13.4, p < 0.05 -3.1, NS vs. -56.0, p < 0.05 0.22, NS vs. -21.5, p < 0.05 14.5, NS vs. -33.2, NS 24.8, NS vs. -115.2, NS</td>
</tr>
<tr>
<td>Kim SI 200816</td>
<td>34</td>
<td>SMS, V, I</td>
<td>6</td>
<td>Weekly</td>
<td>No weekly SMS support. Usual care during clinic visit</td>
<td>Weekly recommendations by a nurse to adjust medication or insulin based on patient's input of SMBG, medications, insulin dose, diet, and exercise level. Patients received reminders if they did not input information at least once a week.</td>
<td>HbA1C (mg/dL) FPG (mg/dL) 2-HrPMB (mg/dL) TG (mg/dL) HDL (mg/dL)</td>
<td>7.68 vs. 7.07, p < 0.05 144.9 vs. 151.6, p < 0.05 227.9 vs. 213.7, p < 0.05 190.4 vs. 175.9, p < 0.05 213.2 vs. 178.2, p < 0.05 43.3 vs. 47.3, p < 0.05</td>
</tr>
<tr>
<td>AUTHOR/YR</td>
<td>SAMPLE SIZE</td>
<td>TECHNOLOGY</td>
<td>DURATION (MONTHS)</td>
<td>DELIVERY FREQUENCY</td>
<td>CONTROL</td>
<td>INTERVENTION</td>
<td>MEASURES</td>
<td>RESULTS C VS. I</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kim HS, 2008²⁷</td>
<td>34</td>
<td>SMS, I</td>
<td>12</td>
<td>Weekly</td>
<td>Usual care during clinic visit</td>
<td>Weekly SMS optimal recommendations based on clinical history, smoking habits, BMI, blood pressure, and lab data. Continuous education and reinforcement of diet and exercise, medication adjustment, and frequent self-monitoring of blood glucose levels.</td>
<td>HbA1C (mg/dL) FPG (mg/dL) 2-HFPG (mg/dL) TC (mg/dL) TG (mg/dL) HDLC (mg/dL)</td>
<td>8.19 vs. 6.67, p < 0.05 175.8 vs. 149.6, p < 0.05 264.7 vs. 169.7, p < 0.05 p = NS p = NS p = NS</td>
</tr>
<tr>
<td>Marquez-Contreras, 2004²²</td>
<td>104</td>
<td>SMS</td>
<td>4</td>
<td>Twice/Weekly</td>
<td>Standard treatment</td>
<td>SMS messages with recommendations to control Blood Pressure</td>
<td>% of compliers Rate of compliance % of patients with BP control</td>
<td>51.5% vs. 64.7%, p = NS 88.1% vs. 91.9%, p = NS 85.7% vs. 84.4%, p = NS</td>
</tr>
<tr>
<td>Menon-Johansson, 2006²²</td>
<td>47</td>
<td>SMS, V</td>
<td>6</td>
<td>Once, within 2 weeks of lab results</td>
<td>Standard results notification and recall to clinic</td>
<td>SMS notification of HIV/AIDS lab test results and recall to clinic within two weeks of test results</td>
<td>No. of messages sent % results sent Staff time saved Mean days to diagnosis Median time to treatment</td>
<td>952 messages 33.9% results 46 hours/month saved 11.2 vs. 7.9 days, p < 0.01 15.0 vs. 8.5 days, p < 0.05</td>
</tr>
<tr>
<td>Nguyen, 2008²⁰</td>
<td>10, 14-80 yrs, mean 33 yrs</td>
<td>SMS, V</td>
<td>.75</td>
<td>Daily</td>
<td>Withdrawal of technology</td>
<td>Training in the use of cell phone to persons with Cerebral Palsy and MS</td>
<td>% who improved performance % improved satisfaction</td>
<td>90% 90%</td>
</tr>
<tr>
<td>Ostojic, 2005¹¹</td>
<td>16</td>
<td>SMS</td>
<td>4</td>
<td>Weekly</td>
<td>Standard care and education, diary</td>
<td>Standard care plus PEF monitoring and therapy adjustment by SMS</td>
<td>Asthma - cough Night symptoms Ave daily dose-ICS Ave daily dose-LABA</td>
<td>1.85 vs. 1.42, p < 0.05 1.22 vs. 0.95, p < 0.05 81.25 vs. 77.63, p < 0.01 17.31 vs. 14.80, p < 0.01</td>
</tr>
<tr>
<td>Rami, 2006¹⁰</td>
<td>36</td>
<td>SMS, V</td>
<td>6</td>
<td>Daily</td>
<td>Usual support and paper diary</td>
<td>Cell phone and SMS monitoring and support by a diabetologist, with an automated SMS message or a personalized message advising insulin dose adjustment</td>
<td>Change in HbA1c 3 mos Change in HbA1c 6 mos</td>
<td>+1.0 vs. -0.15, p < 0.05 +0.15 vs. -0.05, p < 0.05</td>
</tr>
<tr>
<td>Riva, 2006¹⁰</td>
<td>33</td>
<td>V, I</td>
<td>0.07</td>
<td>Once, over two days</td>
<td>No treatment</td>
<td>1. Multimedia narratives of a trip to a desert tropical beach. 2. New Age music video with a tropical beach visual content</td>
<td>Anxiety level Relax scale STAI level</td>
<td>Chisq = 2.943, p < 0.01 Chisq = 2.0 Chisq = 20.749, p < 0.01</td>
</tr>
</tbody>
</table>
Table 1. Cell Phone Intervention Studies continued

<table>
<thead>
<tr>
<th>AUTHOR/ YR</th>
<th>SAMPLE SIZE</th>
<th>TECHNOLOGY</th>
<th>DURATION (MONTHS)</th>
<th>DELIVERY FREQUENCY</th>
<th>CONTROL</th>
<th>INTERVENTION</th>
<th>MEASURES</th>
<th>RESULTS C VS. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers 2005[4]</td>
<td>1705</td>
<td>SMS, V</td>
<td>6</td>
<td>Daily first 1.5 months, 3-week 4.5 months</td>
<td>No advice or support</td>
<td>Personalized text messages for cessation, advice, support and distraction</td>
<td>Quit rate 6 weeks
 Quit rate 12 weeks
 Quit rate 26 weeks 90% abstinence 26 weeks</td>
<td>13% vs. 28%, p < 0.01
 26% vs. 41%, p < 0.01
 45% vs. 56%, p < 0.01
 55% vs. 86%, p < 0.05</td>
</tr>
<tr>
<td>Tasker 2007[3]</td>
<td>37</td>
<td>SMS, EM, I</td>
<td>12</td>
<td>Daily</td>
<td>Paper diary during clinic visit</td>
<td>Daily text message requesting response to questions related to hypo events</td>
<td>Frequency of hypotension
 Hypotension response rate (Paper diary, CBI, V)</td>
<td>P2/month
 65% vs. 99%, p < 0.05</td>
</tr>
<tr>
<td>Vidrine 2006[6]</td>
<td>95</td>
<td>V</td>
<td>4</td>
<td>Twice/month, 24-h hotline, phone call every 2 months</td>
<td>Usual care and physician advice to quit</td>
<td>Usual care plus eight weekly smoking cessation counseling sessions tailored specifically to the needs of persons with HIV/AIDS, delivered by cell phones, 24-h quit hotline</td>
<td>PP abstinence (24 h)
 Sustained abstinence (7 days)</td>
<td>10.3% vs. 36.8%, p < 0.01
 7.7% vs. 21.1%, NS</td>
</tr>
<tr>
<td>Vilella 2004[7]</td>
<td>4043</td>
<td>SMS, I</td>
<td>4</td>
<td>Once, 72 h prior</td>
<td>No SMS reminder</td>
<td>SMS reminder for the next Hep A+B vaccination</td>
<td>Compliance C1 vs. C2
 vs. Intervention: Hep A+B 2nd dose
 Hep A+B 3rd dose
 Hep A 2nd dose</td>
<td>77.2% vs. 89.7%, p < 0.05
 23.6% vs. 26.9%, p < 0.05
 47.1%, p < 0.05
 13.2% vs. 16.4%, vs. 27.9%, p < 0.05</td>
</tr>
<tr>
<td>Yoon 2008[8]</td>
<td>51</td>
<td>SMS, I</td>
<td>12</td>
<td>Weekly</td>
<td>Weekly optimal advice from a nurse via SMS or the computer Internet based on patient input of SMBG, medication details, diet and exercise</td>
<td>Weekly optimal advice from a nurse via SMS or the computer Internet based on patient input of SMBG, medication details, diet and exercise</td>
<td>9 months: Hep A+B
 FPG levels mg/dL
 2HMG
 12 months: Hep A+B
 FPG levels mg/dL
 2HMG
 Total cholesterol
 Triglycerides
 HDL</td>
<td>0.33 vs. -1.31, p < 0.05
 12.2 vs. -10.5, NS
 -17.4 vs. -66.8, p < 0.05
 0.81 vs. -1.32, p < 0.05
 27.7 vs. -10.7, NS
 18.1 vs. -100, p < 0.05</td>
</tr>
</tbody>
</table>

2HMG, 2-h postmeal glucose; BMI, body mass index; BP, blood pressure; CBI, computer-based interview; DMAS, disease management assistance system; EM, e-mail; FPG, fasting plasma glucose; FTA, Failure to attend; HbA1c, Hemoglobin A1c; HDL, high density lipoprotein; VAS, visual analog scale; Hypo, hypoglycemic; I, Internet; ICS, inhaled corticosteroids; IT, insulin therapy; LABA, long-acting β-agonist; MET, metabolic equivalent; MS, multiple sclerosis; NRT, nicotine replacement therapy; NS, not significant; PA, physical activity; PDA, personal digital assistant; PEF, peak expiratory flow; PP, point prevalence; QOL, quality of life; SMBG, self-monitored blood glucose; SMS, short message service; ST, Sweet Talk; STAI, state-trait anxiety inventory; TC, total cholesterol; TG, triglycerides; V, voice.

along with SMS, [13,22,23,26,27,28,32,34] the other 8 studies [16,23-27,35,36] combined Internet and the SMS for delivering self-care education and information. In two studies[16,23] messages were sent via e-mail in addition to utilizing other communication technologies. Five of the outcomes studies[15,17,20,21,27] and four process of care studies[16,19,20] used only SMS. Most studies used “Push” technology where participants received personalized text messages or automated voice mail messages delivered to their cell phones tailored to their specific health needs and personal preferences. Two studies[32,36] used two-way communication encouraging participants to use their cell phones to ask questions.

Frequency of message delivery ranged from daily to once a week and varied by disease or behavior modification area. Messages were sent daily in three of the diabetes management studies[23,32,36] and three smoking cessation studies[12,30,31] and in the smoking cessation studies, 5
messages per day were sent during the first 6 weeks, then reduced to 2–3 per week for the remaining weeks. In one study, text messages were sent daily for the first 10 weeks. In another smoking cessation study, participants received one counseling session per week over a cell phone for 8 weeks and had access to a 24-hour hotline. A hypertension control study advising participants to take blood pressure control medication sent messages twice per week. A third group of studies in asthma, diabetes, and smoking cessation sent messages once per week. Medication reminders were delivered according to the prescribed medication schedule, whereas the general appointment reminders were sent just once 1 to 3 days prior to the appointment. Vaccination appointment reminders were sent 2 to 3 days prior to the scheduled appointment. Riva evaluated a stress-relieving multimedia intervention delivered to cell phones during commuting hours for 2 days. Two studies that did not report significant differences between groups included one that sent medication compliance reminder text messages twice per week and the other that sent a reminder 1 day before the orthodontics clinic appointments. Twenty of 25 studies (80%) reported significant differences between control and intervention groups as a result of cell phone and text messaging interventions regardless of the frequency of message delivery.

STUDIES WITH PROCESSES OF CARE MEASURED

The set of 25 studies was categorized by whether processes or outcomes of care were measured. The process of care is defined as activities involved in the delivery of healthcare. Studies that focused on improving the process of care were grouped into two areas. Moment-Johansson and colleagues used text messaging for notification of diagnoses and recall of patients with positive lab results to the clinic for treatment consultation. They reported fewer days to diagnosis and treatment among those who were notified of test results via text messages. Two studies that evaluated sending appointment reminder text messages to cell phones found that failure-to-attend rates were significantly lower among persons who were sent SMS reminders than among those who were not sent a reminder about their upcoming clinic appointment. In contrast, failure-to-attend rate did not significantly differ between groups in two other appointment reminder studies. Nguyen et al. used cell phones and their text messaging capabilities to teach persons with disabilities to improve communication. After 3 weeks of training, 90% of participants had improved performance and 90% were satisfied with their learning.

STUDIES WITH OUTCOMES OF CARE MEASURED

We defined outcomes of care to refer to change in disease-specific health outcomes as specified in the outcomes under study. Sixteen of 19 studies (84%) evaluated health outcomes and reported change in health outcomes as a result of an intervention delivered through cell phones using voice or SMS. These studies were grouped into the following outcome categories: (1) behavior change: 10 studies, (2) clinical improvement: 13 studies, and (3) social functioning: 3 studies.

Behavior change. We defined behavior change as an action taken that has been documented to lead to better health outcomes. Smoking cessation, compliance with medication taking, and getting timely vaccinations were the behaviors that were compared among intervention and control groups. Eight of 10 studies (80%) reported change in behavior following an informational intervention delivered to cell phones using voice or short text message service. Smoking cessation studies reported significantly greater success in behavior modification among the intervention group participants who received a smoking cessation–related educational intervention delivered to their cell phones. Bramley et al., who compared 355 Maori and 1,350 non-Maori young participants in evaluating the effectiveness of a cell phone–based smoking cessation intervention consisting of personalized advice and support in both English and Maori language, found that Maori young men and women in the intervention group were two times more likely to report quitting at 6 weeks than participants in the control group. A randomized controlled trial demonstrated a positive health outcome for participating young smokers who were sent personalized text messages to their cell phones for 26 weeks. Smoking cessation advice, support, and distraction messages were sent five times per day 1 week prior to an agreed-upon quit date and for 4 weeks following the quit date, and three messages per week for the remaining 21 weeks of the study duration. Authors found that continuous abstinence with three or fewer lapses remained significantly higher among intervention group participants at 26 weeks. There was a significantly greater increase in compliance with medication taking among HIV-positive patients with memory impairment compared to those without impairment and with keeping hepatitis A and B dose vaccination schedules among international travelers as a result of reminders sent to the cell phones of study participants. There was also a significant improvement in insulin adherence (p < 0.05) among persons with type 1 diabetes who received tailored text messages with goal-specific prompts.

Clinical improvement. Twelve of 13 studies (92%) measured and reported significant changes in clinical outcomes, as a result of voice or text messages sent to a cell phone. Nine studies assessed the effectiveness of using cell phones on diabetes control and management, one on asthma, and one on hypertension.
Other clinical areas covered by clinical improvement studies included stress management and physical activity.23

Of the nine studies that evaluated the effectiveness of diabetes control and management information and education messages and advice delivered via cell phones, four studies were among patients with type 1 diabetes and five studies were among patients with type 2 diabetes. All studies but one reported significant improvement in diabetes-related health outcomes.25 Studies that used weekly recommendations from a nurse to adjust insulin or medication based on information input via SMS by the patient showed significant improvements in blood sugar levels following the intervention (p < 0.05).26-28 Studies also found that diabetes education and advice via cell phone and text messaging resulted in significant reductions in HbA1c (p < 0.05).29-32,35 One study noted an overall HbA1c difference of 1% between those receiving conventional insulin therapy alone and those receiving intensive insulin therapy plus text messaging support from a diabetes care health professional.29

Peak flow monitoring is a recommended asthma care guideline that helps prevent an asthma exacerbation by regular monitoring of asthma symptoms. In a randomized controlled trial by Ostojic and others, patients with asthma who received standard care plus peak expiratory flow monitoring and weekly treatment adjustment using text messaging for 4 months showed significantly greater improvements in asthma cough and night-time symptoms while lowering daily doses of inhaled corticosteroids and long-acting β-agonist than those who received only standard care.30

Data from automated blood pressure monitoring using cell phones was used to send alerts and reminders twice per week for 4 months to intervention group patients on how to control their blood pressure.31 Results indicated that participants in both groups had nearly equal percent of patients with controlled blood pressure at follow-up. Although rate of compliance with blood pressure control advice and percent of compliers were slightly higher in the intervention patients, there was no significant difference between groups in either of the two measures.

Cell phones were shown to help people relax in real-life situations of stress.32 Multimedia messages narrating relaxation on a tropical beach were sent to cell phones of commuters in the intervention group. Follow-up outcome measures of the intervention group participants showed significant decrease in anxiety score (State-Trait Anxiety Inventory) (p < 0.01) compared to two control groups exposed to commercial videos with New Age music, and to no intervention, respectively.33 A study of mobile phone personalized advice and motivational tips for physical activity observed a significant improvement (p < 0.05) in percent body fat lost; however, body mass index (BMI), diastolic blood pressure, and systolic blood pressure were unchanged.34

Social functioning. Three studies measured social functioning outcomes. One study in the area of diabetes observed a significant improvement in quality of life (p < 0.05) and satisfaction with life (p < 0.05).35 Another diabetes study and a smoking cessation study observed significant improvement in self-efficacy (p < 0.00136 and p < 0.013).37

SUCCESSFUL PROCESSES AND OUTCOMES OF CARE

Our purpose in doing this review was to examine whether cell phones and text messaging can be effectively used to improve processes and outcomes of care. An intervention was considered effective if the measures were significantly improved (p < 0.05) among the intervention group participants compared with the participants in the control group. A total of 101 processes and outcomes were measured in the 25 studies, with some evaluated in more than one study. There were 61 (60%) successful process or outcome measures among those receiving the cell phone-based intervention.

Discussion

As shown by the results of this review, information and education interventions delivered through wireless mobile technology resulted in both clinical and process improvements in the majority of studies included in this review. Chronic diseases such as diabetes and asthma, requiring regular management, as well as smoking cessation requiring ongoing advice and support, benefited most from the cell phone interventions. Use of cell phones and text messaging in improving healthcare, although gaining interest, is still in its infancy. As the ownership and use of cell phones increases, and more patients are willing to incorporate them into their daily lives for regular disease management such as for diabetes or asthma, more benefits will be documented. The strength of this study is in the international applicability of this technology. Studies were conducted on several continents—America, Europe, and Asia—indicating that this technology can be used all over the world.

STUDY LIMITATIONS

When interpreting the results of this study, some of the limitations should be taken into consideration. One of the limitations of this review is the small sample sizes, with two studies included in this review having less than 20 participants. The findings of these studies may not be generalizable to other populations. Second, this review includes one study for which we only have a published English abstract. Since full text of this study was not accessible, we may have left out some information. We decided to include this study since sufficient details were provided in the published English abstract.
and important evidence from this randomized controlled trial would otherwise be missed. The cost of technology is always of interest to adopters. When interventions lead to comparable outcomes, the more feasible or less costly intervention should be selected. Unfortunately, only two studies in this review provided cost information (Table 1).

Also, the reviewed studies did not express any concerns over the impediments to the use of cell phones such as lack of reimbursements to health professionals receiving the call, time commitment, or potential abuse of cell phone and SMS privilege.

Implications for Practice

In addition to improving healthcare outcomes, wireless mobile technology has other implications for practice. It may help remove disparities. This is the first technology where industry has documented a trend toward a digital divide in the reverse. This increases the likelihood of successfully delivering health improvement interventions to traditionally hard-to-reach populations. Sending cell phone text messages has been helpful for patients in reducing missed physician appointments and for staying in touch with their physician for follow-up questions or consults. Interactive multimedia capabilities and portability of cell phones have proven to be beneficial, even life-saving in some areas of healthcare. Since compared to computer technology, the ownership and use of cell phones is more prevalent among persons of low socioeconomic status, use of cell phones may reduce the impact of digital divide inherent in Web-based health interventions. As more and more patients own and are willing to use mobile technologies for chronic disease management, initial costs of automated message delivery may be offset by lower healthcare utilization costs.

In order to have a better understanding and greater insight into the effectiveness of cell phone interventions in improving health outcomes and processes of healthcare, more controlled studies with larger sample sizes need to be conducted. Healthcare providers should be willing to incorporate this common everyday technology. Therefore, studies are also needed on the cost-effectiveness and technical and financial feasibility of adoption in real clinical settings. Cell phones, through combination of voice and text messaging, their location-independence, and flexibility offer a great opportunity for designing and developing health interventions for the populations. Where traditional interventions have not been successful in reaching out to all, theory-based mobile e-health behavioral interventions are more likely to succeed and have the potential of lowering healthcare costs by lowering the use of healthcare resources. Cell phones, a common everyday technology, are already in the hands of millions of people. Harnessing this technology for improving the health of populations would be a step in the right direction.

Acknowledgment

The authors would like to thank Ms. Teira Gunlock for helping with the library runs and photocopying.

Author Disclosure Statement

The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs. No competing financial interests exist.

REFERENCES

42. Liu CT, Yueh YT, Lee TC, Li YC. Observations on online services for diabetes management. Diabet Care 2005;28:3807–3808.

44. Kaplan WA. Can the ubiquitous power of mobile phones be used to improve health outcomes in developing countries? Global Health 2006:2:9.

Address reprint requests to:
Santosh Krishna, Ph.D., Ed.S.
School of Public Health
Saint Louis University
3545 Lafayette Avenue, Suite 300
St. Louis, MO 63104

E-mail: SantoshKrishna5@gmail.com

Received: July 26, 2008
Accepted: August 11, 2008